Antagonistic analogs of growth hormone-releasing hormone increase the efficacy of treatment of triple negative breast cancer in nude mice with doxorubicin; A preclinical study
نویسندگان
چکیده
INTRODUCTION This study evaluated the effects of an antagonistic analog of growth hormone-releasing hormone, MIA-602, on tumor growth, response to doxorubicin, expression of drug resistance genes, and efflux pump function in human triple negative breast cancers. METHODS HCC1806 (doxorubicin-sensitive) and MX-1 (doxorubicin-resistant), cell lines were xenografted into nude mice and treated with MIA-602, doxorubicin, or their combination. Tumors were evaluated for changes in volume and the expression of the drug resistance genes MDR1 and NANOG. In-vitro cell culture assays were used to analyze the effect of MIA-602 on efflux pump function. RESULTS Therapy with MIA-602 significantly reduced tumor growth and enhanced the efficacy of doxorubicin in both cell lines. Control HCC1806 tumors grew by 435%, while the volume of tumors treated with MIA-602 enlarged by 172.2% and with doxorubicin by 201.6%. Treatment with the combination of MIA-602 and doxorubicin resulted in an increase in volume of only 76.2%. Control MX-1 tumors grew by 907%, while tumors treated with MIA-602 enlarged by 434.8% and with doxorubicin by 815%. The combination of MIA-602 and doxorubicin reduced the increase in tumor volume to 256%. Treatment with MIA-602 lowered the level of growth hormone-releasing hormone and growth hormone-releasing hormone receptors and significantly reduced the expression of multidrug resistance (MDR1) gene and the drug resistance regulator NANOG. MIA-602 also suppressed efflux pump function in both cell lines. CONCLUSIONS We conclude that treatment of triple negative breast cancers with growth hormone-releasing hormone antagonists reduces tumor growth and potentiates the effects of cytotoxic therapy by nullifying drug resistance.
منابع مشابه
Targeted chemotherapy for triple-negative breast cancers via LHRH receptor.
Triple-negative breast cancer does not express estrogen and progesterone receptors and there is no overexpression/amplification of the HER2-neu gene. Therefore, this subtype of breast cancer lacks the benefits of specific therapies which target these receptors. About 60% of all human breast cancers express receptors for luteinizing hormone releasing hormone (LHRH, GnRH), which might be used as ...
متن کاملAntagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers
This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with br...
متن کاملFuture of Triple Negative Breast Cancer: Can Immunotherapy Treat This Deadly Subtype of Breast Cancer?
Triple negative breast cancer (TNBC): challenges and solutions via the immune cells TNBC is one of the most complicated types of breast cancer to treat. It is generally diagnosed based on the absence of three receptors: estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2) and is thus defined as a triple negative. TNBC is often more aggressive with lower survival rates...
متن کاملTriple-negative breast cancers express receptors for luteinizing hormone-releasing hormone (LHRH) and respond to LHRH antagonist cetrorelix with growth inhibition.
The aim of the present study was to evaluate the expression of receptors for luteinizing hormone-releasing hormone (LHRH) in human specimens of triple-negative breast cancers (TNBC). In addition, we used in vitro and in vivo models of TNBC to investigate if these receptors are suitable targets for the treatment with the LHRH antagonist cetrorelix. Receptors for LHRH were expressed in all tumor ...
متن کاملPEA-15 inhibits tumorigenesis in an MDA-MB-468 triple-negative breast cancer xenograft model through increased cytoplasmic localization of activated extracellular signal-regulated kinase.
PURPOSE To determine the role of PEA-15 in breast cancer. EXPERIMENTAL DESIGN A reverse-phase protein array was used to measure PEA-15 expression levels in 320 human breast cancers; these levels were correlated with clinical and tumor characteristics. PEA-15 was overexpressed by an adenovirus vector or by stably expressing PEA-15 in different breast cancer cell lines. The effects on breast ca...
متن کامل